
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2013

Advantages and challenges of programming the
Micron Automata Processor
Christopher Sabotta
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Sabotta, Christopher, "Advantages and challenges of programming the Micron Automata Processor" (2013). Graduate Theses and
Dissertations. 13613.
https://lib.dr.iastate.edu/etd/13613

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13613&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13613&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13613&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F13613&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F13613&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13613&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=lib.dr.iastate.edu%2Fetd%2F13613&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/13613?utm_source=lib.dr.iastate.edu%2Fetd%2F13613&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Advantages and challenges of programming the Micron Automata Processor

by

Christopher R. Sabotta

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering

Program of Study Committee:
Srinivas Aluru, Major Professor

Chris Chu
Akhilesh Tyagi

Iowa State University

Ames, Iowa

2013

Copyright c© Christopher R. Sabotta, 2013. All rights reserved.

www.manaraa.com

ii

DEDICATION

I would like to dedicate this thesis to my family. Their unconditional care for me has been

at the heart of all my accomplishments.

I would also like to thank my friends for their care and support during the writing of this work.

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . iv

LIST OF FIGURES . v

ACKNOWLEDGEMENTS . vi

ABSTRACT . vii

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 UNDERSTANDING THE MICRON AUTOMATA PRO-

CESSOR . 4

2.1 Introduction . 4

2.2 Understanding the Automata Processor . 4

2.2.1 Sequential processor implementations of NFA 4

2.2.2 Automata Processor implemenations of NFA 5

2.2.3 Gaining parallelism . 6

2.3 Automata Processor implementation . 7

2.4 Competing NFA hardware . 8

2.4.1 Scope of ability . 8

2.4.2 Performance and capacity . 8

CHAPTER 3 USING THE MICRON AUTOMATA PROCESSOR 11

3.1 Automata Processor components . 11

3.1.1 Types of element . 12

3.1.2 Input and output . 14

3.2 Modeling automata . 14

www.manaraa.com

iv

3.2.1 Using Automata Network Markup Language 15

CHAPTER 4 SCANNING FOR PROTEIN MOTIFS USING THE MI-

CRON AUTOMATA PROCESSOR . 18

4.1 abstract . 18

4.2 Introduction . 19

4.3 Methodology . 20

4.3.1 PROSITE patterns . 21

4.3.2 Conversion of PROSITE patterns to ANML automata 22

4.3.3 Finding patterns in proteins . 25

4.3.4 Finding pattern locations in proteins . 26

4.4 Implementation and results . 26

4.4.1 Compile-time overhead . 26

4.4.2 Execution-time overhead . 27

4.4.3 Effective processing rate . 28

4.4.4 Comparison and results . 28

4.5 Conclusion . 29

CHAPTER 5 APPLICATION DEVELOPERS’ NOTES 31

5.1 Automata Processor Board configuration . 31

5.2 Finer details for designing automata . 32

5.2.1 Element and routing implementation . 32

5.2.2 Avoiding scaling and routing pitfalls . 33

5.3 Designing robust solutions . 35

5.3.1 Multiple automata instances . 35

5.3.2 Managing input and output data . 37

CHAPTER 6 CONCLUSION . 40

www.manaraa.com

v

LIST OF TABLES

2.1 Processing and Storage Complexity for NFA Implementation 6

4.1 Total Computation Time for Sample Problem Instances (s) 28

www.manaraa.com

vi

LIST OF FIGURES

Figure 2.1 Automata exhibiting dual parallelism 7

Figure 3.1 Counting machine using exclusively STEs 13

Figure 3.2 Counting machine using a Counter Element 13

Figure 4.1 Overview of the working of PROTOMATA 21

Figure 4.2 The filter-automaton. 24

Figure 4.3 The location-automaton . 25

Figure 4.4 Protomata Scaling Efficiency . 29

Figure 5.1 Genome mapping tree solution . 34

Figure 5.2 Genome mapping decomposed solution 35

Figure 5.3 Automata redefined without additional compilation 38

www.manaraa.com

vii

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank those who helped me with the research and

writing of this thesis.

First and foremost, Dr. Srinivas Aluru for his inspiration, teaching and support throughout

the development of this work, even when at a distance. I appreciate him accepting me as a

student and I am thankful for what he has taught me.

I would also like to thank my committee members for their support of this work: Dr. Chris

Chu and Dr. Akhilesh Tyagi.

I would like to sincerely thank Indranil Roy for his contributions and insight throughout the

entire duration of the project. Indranil has been exceptionally teaching and patient with all of

his help and I am truly grateful.

I am thankful for Micron for sponsoring my research, and for providing me with the resources

and opportunities I needed.

I would also like to thank Michael Leventhal, Matt Tanner, and all of their colleagues at Micron

for their assistance. Their persistent communication and collaboration has been essential.

www.manaraa.com

viii

ABSTRACT

Non-Von Neumann computer architectures are being explored for acceleration of difficult

problems. The Automata Processor is a unique non Von Neumann architecture capable of effi-

cient modeling and execution of non-deterministic finite automata. The Automata Processor is

shown to be excellent in string comparison operations, specifically with regard to bioinformat-

ics problems. A greatly accelerated solution for Prosite pattern matching using the Automata

Processor called PROTOMOTA is presented. Furthermore, a developers’ guide detailing the

lessons learnt while designing and implementing PROTOMOTA is provided. It is hoped that

the developers’ guide would aid future developers to avoid critical pitfalls, while exploiting the

capabilities of the Automata Processor to the fullest.

Keywords: Automata Processor, Reconfigurable computing, Pattern matching.

www.manaraa.com

1

CHAPTER 1 INTRODUCTION

Today, a lot is known about the world around us. Ironically, relatively little is known about

what governs what is going on inside us. This has been changing of late with the continued

introduction of extremely fast and increasingly accurate biological instruments and computing

methods which has enabled the field of biology to grow in ways that might otherwise been

impossible. It is the combination of this computer engineering and biology which brings us

now the study of bioinformatics, perhaps one of the most prolific fields of the twenty-first

century.

Many important bioinformatics problems are complex and often take a lot of time and

resources. In order to truly extend our knowledge in this field, efficient solutions to these

problems need to be developed so that many instances of the problem can be solved providing

the necessary insight to understand the underlying biology. Therefore we need to accelerate

the processes. Many researchers are looking at accelerating these using Von Neumann archi-

tectures like multicore, many core systems, GPUs etc. This thesis examines whether certain

problems could be better solved using a novel non-Von Neumann architecture called the Micron

Automata Processor.

Conventional computer processors are extremely quick at performing individual operations

in linear succession. With these CPUs billions of individual commands can be executed one af-

ter another every second. Unfortunately, solutions of many problems in bioinformatics contain

a high density of conditional branching, wherein even this seemingly fast processor can take

unacceptable amounts of time to find the result. Non-deterministic Finite Automata (NFA) is

an intuitive mechanism for modeling such problems, but the author is unaware of any hardware

architecture which can directly execute parallel paths in an NFA concurrently. In CPU based

www.manaraa.com

2

architectures, execution of an NFA may lead to a state-space explosion leading to exponential

run-time complexity.

The Automata Processor (AP) is the first semiconductor device where the execution of an

NFA can be directly emulated on the device. Besides, the large capacity of the processor allows

the execution of many NFAs in parallel, leading to large scale speedup. Thus the Automata

Processor can work as an effective accelerator for many applications in bioinformatics.

An intuitive use of the Automata Processor is to aid in the characterization of protein

sequences through the identification of motif-patterns present in them. Prosite is a large an-

notated database of known protein motifs. These motifs are represented either as patterns

defined using a syntax very similar to that of regular expressions or on Hidden Markov Model

based profiles. In the rest of this document we would only be considering only motifs expressed

as patterns in the database, of which there are currently 1308 entries. Each of these patterns

are converted into an automaton and defined using the Automata Network Markup Language

(ANML, pronounced as ANiMaL) in order to enable their execution on the Automata Pro-

cessor. After the automata are loaded onto the Automata Processor, the protein sequence(s)

are streamed to check for the occurrence of any motifs in them. The occurrence of a motif

is signaled by the reaching of an accept state of the corresponding automaton. The ending

position of the occurance of the motif in a protein sequence is marked by offset in the protein

sequence when the accept state was matched. The large capacity of the Automata Processor

allows the automata for the entire database of Prosite patterns to be loaded on a single chip

simultaneously. By executing all the atomata concurrently, large speedups can be obtained.

It goes without saying that the Automata Processor is a unique device. Utilizing the

power of the Automata Processor means modeling solutions to problems in unconventional

ways. Even skilled developers may initially find it challenging to think of solutions in terms

of NFA. Besides, the developers need to learn the nuances of using this device effectively and

the restrictions that it places on the automata for their efficient execution. In this thesis,

the Developers Note section contains all the lessons learnt while designing and implementing

PROTOMOTA. This section details the discovered brilliance and pitfalls of developing for the

www.manaraa.com

3

Automata Processor and seeks to lower the barriers of entry to programming on the Automata

Processor.

Although adjusting to the novelty of the Automata Processor was at times arduous, it

proved to be rewarding. The implementation of the PROSITE patterns in the Automata

Processor is intuitive, and the acceleration provided is exemplary. For such direct, regular-

expression-like string matching the Automata Processor seems unparalleled. The Automata

Processor stands to show itself as an impressive boon for the world of bioinformatics and will

be watched with anticipation as future generations of it are developed.

The rest of this thesis is organized as follows. First, chapter 2 provides an introduction

to the Automata Processor. Further, chapter 3 then discusses programming model and ways

of programming the automta processor. In chapter 4, an application to accelerate the search

for motif-patterns in protein sequences using the Automata Processor called PROTOMATA is

presented. This is followed by the detailed developers’ notes in Chapter 5. Finally, this thesis

culminated with conclusion and scope of future work in Chapter 6.

www.manaraa.com

4

CHAPTER 2 UNDERSTANDING THE MICRON AUTOMATA

PROCESSOR

2.1 Introduction

The Micron Automata Processor (AP) is a highly parallel reconfigurable non-von Neu-

mann architecture designed for the emulation of Non-Deterministic Finite Automata (NFA).

The Automata Processor is effective in modeling complex regular expressions as well as other

more complex automata. The architecture allows for effective solutions for pattern match-

ing problems found in computational biology, cyber security, graphics processing, and more.

Its purpose-built design exceeds the capabilities of similar FPGA-based solutions while also

significantly outperforming them. The Automata Processor connects to a system through

PCI Express and is designed to supplement a CPU as an acceleration device rather than a

standalone utility.

2.2 Understanding the Automata Processor

The Automata Processor is purpose-built hardware designed specifically for the acceleration

of processing Non-Deterministic Finite Automata (NFA). The processing of NFA has become

an important topic as they offer an intuitive model for regular expression matching problems,

which can be extended to numerous fields.

2.2.1 Sequential processor implementations of NFA

A von Nuemann sequential processor (CPU) may take a direct approach of modeling an

NFA by defining a set of states and connections. By maintaining a list of which states are

active, and given the next token of input data, the next set of states can be computed and

www.manaraa.com

5

updated. Unfortunately, the CPU must make considerations for each of its active states and

their connections sequentially, and such state processing time is increased with increased ac-

tivity across the graph. In the worst case, the entire NFA may be active resulting in the entire

graph needing to be considered for a given character of input - yielding a processing complexity

O(n2). Although such direct solutions offer a simple storage cost O(n), the large processing

complexity makes them unrealistic for large problems.

While CPUs struggle with the processing of multiple simultaneous states in NFA, Deter-

ministic Finite Automata (DFA) require singularity in state. This property allows for the

direct processing O(1) of DFA, and encourages a translation from NFA to DFA. For an NFA

to be modeled as a DFA, the equivalent DFA must be able to model any combination of si-

multaneous states possible in the NFA. For this reason while NFA can be reliably converted

into equivalent DFA [2], it comes with the challenge of significantly inceased storage cost.

The storage cost reduction of NFA-derived DFA is the target of much research, and has

been viewed from many different perpectives. Some solutions such as Campeanu et al. [3]

focus on simplifying the NFA as much as possible by combining excessive states. Other solu-

tions attempt to reduce the scope of the problem to allow for simplifications. Chia-Hsiang et

al. [4] require compressed NFA specifically taken from regular expressions for their solution.

Alternately, Holub [13] attempts storage and simulation simplifications through dynamic pro-

gramming. While many unique solutions have been developed however, no solution escapes

the exponential DFA storage cost. [25, 24, 23, 21]

2.2.2 Automata Processor implemenations of NFA

The Automata Processor allows for a physical implementation of NFA. It has many con-

figurable elements which act as individual states for a modeled NFA. These elements can be

dynamically connected to one another and configured to respond to different stimuli. In this

way the Automata Processor is capable of literally modeling NFA directly. Because of this the

Automata Processor has a direct NFA storage cost of O(n).

The physical design of the Automata Processor allows for processing to be done at an

www.manaraa.com

6

Processing Complexity Storage Cost

Sequential Processor NFA O(n2) O(n)

Sequential Processor Equivalent DFA O(1) O(
∑n)

Automata Processor NFA O(1) O(n)

Table 2.1 Processing and Storage Complexity for NFA Implementation

element level, and gives the input to all elements simultaneously. Because of this, all state

processing is done in parallel. This means that regardless of how many states are active in

an Automata Processor modeled NFA, the next-state computation is constant. This gives it

an O(1) processing cost, and an impressive advantage over generic CPU solutions shown in

Table 2.1.

2.2.3 Gaining parallelism

A common target of NFA solutions is pattern matching. An NFA can be used for pattern

matching rather directly. For every character in a target string, a state is created to look for

that character. With the states connected in the order in which they appear in the target

string, the automata is complete. For the state of the final character to have been entered, it

must have passed through all previous states consequtively. This way we know that if the final

state has been entered, the pattern has been matched.

The Automata Processor is capable of simultaneously processing action for each of its

active states for each token of input. The time step in which an input character is processed

and the states are updated is known as a symbol cycle. The effective parallelism of the

Automata Processor is in part derived from this simultaneous inspection of multiple active

states within an NFA. Parallelism for the Automata Processor is further derived from its

ability to simultaneously process multiple separate NFA. A simple example of this parallelism

is shown with two string matching automata processing an input stream of ’COCO...’ in

Figure 2.1. Note that unique possibilities are explored within a single automata, as well as

within different automata simultaneously.

www.manaraa.com

7

Figure 2.1 Automata exhibiting dual parallelism

2.3 Automata Processor implementation

The entire Automata Processor exists as a conglomeration of 6 distinct ranks connected to

a system through PCI Express. An Automata Processor rank consists of 8 distinct Automata

Processor cores on a single chip. Each core consists of two half-cores containing 24K elements

each, where no connections can be made between elements of unique half-cores. It is the

elements of these half-cores which are used to directly model the states of NFA.

With a section of the Automata Processor configured to model a desired NFA, input can be

streamed. The modeled NFA views each streamed-in character as the stimulus for a potential

state transition. An Automata Processor core processes data at a rate of 1 Gbps. Because

one byte characters are the fundamental unit of the Automata Processor this can be better

viewed as 128 ∗ 106 characters per second. This means that the state of a modeled NFA can

be updated every 7.45 ∗ 10−9s. This time is also known as a symbol cycle.

Cores can be associated among their rank, in groups of 1, 2, 4, 8 cores. Grouped cores will

receive data from the same stream of data, while cores of different groups can concurrently

process different streams of data. With all cores associated in one group of 8 the Automata

Processor has an effective throughput of 1 Gbps. With all cores grouped individually with

their own data streams an effective throughput of 8 Gbps is achieved.

www.manaraa.com

8

2.4 Competing NFA hardware

While NFA are difficult to emulate with a sequential processor, Field Programmable Gate

Arrays (FPGAs) are capable of NFA modeling with the use of look up tables [24, 23, 21]. Sim-

ilarly, GPU based solutions have been devised [25]. Due to its specialization, the Automata

Processor is able to show decisive advantage over such FPGA and GPU based solutions. Fur-

thermore, the Automata Processor remains the only such specialized non-FPGA, non-GPU

hardware.

2.4.1 Scope of ability

FPGA and GPU based competing NFA solutions focus directly on implemenation of Perl

Compatible Regular Expressions (PCRE)[1]. For the sake of direct comparison, the Automata

Processor is assessed in terms of such regular expressions. It is important to note however

that the Automata Processor maintains the unique ability to model non-PCRE NFA through

its own configuration language. This configuration language is known as Automata Network

Markup Language (ANML) and allows for simple directed implementation of NFAs with an

XML structure.

The Automata Processor uniquely allows for scaling across multiple chips with balancing

for capacity and throughput. The architecture also allows for new automata to be added to

dynamically to the chip without recompiling the existing automata. This process is known

as incremental update and is only possible with the Automata Processor, whereas competing

FPGA and GPU solutions require a new compilation [25, 23, 21, 25]. Similarly, the Automata

Processor allows for the dynamic reconfiguration of match values and path pruning without re-

producing the layout of the chip. Outside of the Automata Processor, dynamic reconfiguration

is only present in competing solutions using restricted RegEx [8].

2.4.2 Performance and capacity

Although there are 6 ranks in one instance of the Automata Processor, because they cannot

cooperate only 1 rank is used for comparison against other solutions. While statistics on

www.manaraa.com

9

throughput and capacity could be realistically increased by a factor of 6 in most cases, multiple

instances of other solutions could be used to the same effect. Still, the Automata Processor

maintains the advantage of being able to connect these 6 ranks to the rest of a system through

only a singular PCI Express port.

The Automata Processor is shown to be competitive with FPGA based solutions [24, 23, 21]

in terms of throughput. Raw comparisons of throughput are difficult to produce for a number

of reasons. First, various FPGA solutions show data consumption rates ranging anywhere

from 1 to 8 characters per cycle. While this increases the technical throughput, it does not

necessarily model the rate at which the NFA can transition between states. It must also be

considered however that larger per-cycle data consumption potentially introduces a higher

level of control. Wang et al. [23] boast a derived 2.57Gbps throughput but offer significantly

lower capacity than the Automata Processor, requiring 6 chips to fit roughly half the capacity

of an Automata Processor rank. Yang et al. [24] are capable of a 10Gpbs result, but this is

with a consumption of 8 characters per cycle. With slightly better efficiency they also present

a 3.5Gbps result consuming 2 characters per cycle, though all solutions present significantly

lower capacity than the Automata Processor at less than one fourth of one rank.

Competing GPU based solutions in that of Zu et al. [25] show results as high as nearly

14Gbps. In exchange for this rapid processing both routing an capacity are found to be

significantly weaker than with the Automata Processor. This GPU solution only allows for

4 connections from each element, where the Automata Processor allows for 16. Furthermore

the GPU solution can support only one sixth of the elements of a rank of the Automata

Processor. Although the GPU solution boasts a slightly higher throughput, multiple ranks of

the Automata Processor can match such throughput much more quickly than multiple instances

of the GPU can match the Automata Processors capacity. Even with matched capacity, the

Automata Processor remains superior in routing.

A rank of the Automata Processor is capable of producing up to 8Gbps throughput if

the problem can be dissolved into 8 unique streams. For large automata that must span

multiple cores and require the same input, the effective throughput is reduced relative to the

www.manaraa.com

10

group size. This notion of chip scaling makes definative throughput comparisons difficult.

Though the Automata Processor cannot be determined to have higher throughput than all

GPU and FPGA solutions in all cases, it is shown to be competitive. For more infomation on

the comparative capabilities of the Automata Processor view Supplementary Material for An

Efficient and Scalable Semiconductor Architecture for Parallel Automata Processing [8]

www.manaraa.com

11

CHAPTER 3 USING THE MICRON AUTOMATA PROCESSOR

The Automata Processor proves to be exceptionally effective for NFA implementation on

account of its reconfigurability and unique modeling capabilities. To fully utilize the strengths

of the Automata Processor its components and automata definition mechanisms must be un-

derstood. This chapter begins by defining the building blocks of Automata Processor NFA,

and continues to explain how such NFA can be programmed into the device.

3.1 Automata Processor components

The definition of NFA using the Automata Processor can be divided into two major com-

ponents: elements and connections. Individual states of NFA can be modeled using Automata

Processor elements. The directional connections between states are modeled by defining rout-

ing characteristics for these elements. Finally, input and output characteristics can be defined

for the automata are defined to complete a solution.

Elements of an automata can be either active or inactive at any given time. An active

element models an active state within the modeled automata. For each input character in the

stream whether or a not a state is active is determined by the following two queries:

1. The given element is on the receiving end of a connection with a currently active element

2. The given element is configured to accept or match the given input character

If both of these queries are true, the given element enters an active state for the next

processed input character. If either or both of these queries are false, the given element enters

an inactive state, regardless of its current state as a default action. Any element may become

www.manaraa.com

12

permanently active after it is first activated. This process is known as latching. If an element

is in an active state, it is said to be driving any elements to which it connects.

3.1.1 Types of element

Elements provide the building blocks for any graph modeled by the Automata Processor.

Some elements are used for modeling state, while other elements exist for extended capabilities

such as basic logic and counting. Each type of element has unique configurable properties for

NFA modeling.

3.1.1.1 State transition element

The state transition element (STE) is the fundamental component of the automata. Each

STE holds a configurable symbol set which defines its matching characteristics. This symbol

set can be defined to be any subset contained within the full set of 256 possible input characters.

An STE directly models an NFA state and is processed for each character of input in what is

known as a symbol cycle. It is by far the most plentiful and most important type of element

for the Automata Processor.

3.1.1.2 Counter element

Counter elements serve to supplement the work of STEs, and add higher levels of modeling

capability to the Automata Processor. The counter element does not define a symbol set, nor

any other form of direct comparison. Instead, counter elements activate when a configurable

count is reached. Counter elements update an internal counter by one during each symbol cycle

they are driven by an active element. When the defined target is reached, the counter drives

its outgoing connections. This output driving can be configured to be either for a single pulse

or a latched, continuous operation. Counter elements also define an input port for resetting

the count. If a connection is driven to the reset port the count is returned to its original value.

Finally, it is important to note that counter elements driven by STEs are processed in the

same symbol cycle as the driving STE.

www.manaraa.com

13

The counter element can be used to consolidate a large number of duplicate states. An

example is given showing two implementations for an automata designed to find 5 occurrences

of the character ’A’ before a final character ’B’. Figure 3.1 shows a solution with exclusively

STEs. Figure 3.2 shows a solution using the counter element.

Figure 3.1 Counting machine using exclusively STEs

Figure 3.2 Counting machine using a Counter Element

3.1.1.3 Logical element

The final class of element for constructing graphs on the Automata Processor is the logical

element. A logical element is similar to a counter element in that its action is determined by

input signals, and it is processed in the same symbol cycle as the STEs which drive it. Logical

elements are configured to view a series of incoming connections as a set of Boolean variables.

If a signal is being driven, it is considered to be a 1, and if it is not actively being driven

it is considered to be 0. The variable representation of these signals are then considered as

a programmable digital logic expression. The logical element is capable of simulating basic

AND, OR, NAND and NOR gates as well as Sum of Product (SoP) and Product of Sum (PoS)

expressions. Given a set of input signals and its programmed logic, output signals can be

www.manaraa.com

14

driven based on the result.

3.1.2 Input and output

After defining the core implementation of an NFA, its beginning and ending states must be

considered. At the beginning of each problem instance for an Automata Processor solution, the

automata has no active states. Because the activation of further states is dependent on being

driven by currently active states, designated elements configured with the start property are

required. If an element is a startelement it is considered to be driven by the data stream, and

does not require being driven by another element. This start characteristic can be specified

either for only the first character of the data stream, or for all character of the data stream.

Output can be generated as a result of entering a designated state. If an element is

configured to generate output upon its activation the element is said to be reporting. A

reporting element can be configured to generate output data immediately upon its activation.

Alternately, a reporting element can be configured to wait until the end of the data stream and

report if it had been activated. A word of report data consists of the element which reported

it as well as the cycle in which the data has been matched. Current implementations of the

Automata Processor suffer large time penalties for repeated quick reporting. Unfortunately if

an element does not report until the end of data the knowledge of the matching symbol cycle

is lost. A quality Automata Processor solution will reasonably balance the use of reporting

elements.

3.2 Modeling automata

Programmed place and route executable solutions for the Automata Processor exist in

uniquely defined finite state machine (.fsm) automata files. Such solutions can be generated

in one of two ways using the Automata Processor compiler. 1) Regular Expressions can be

directly converted into programmable automata, or 2) Automata may be directly defined (and

go beyond regular expressions) with the XML based Automata Network Markup Language

(ANML). Generating automata directly from regular expressions is trivial, however it is very

www.manaraa.com

15

limiting in terms of its capabilities. For this reason the remainder of this section focuses on the

implementation of automata using ANML. Although the general form of ANML is discussed, it

is important to review the most recent schema for the most up-to-date syntax and component

definition information.

3.2.1 Using Automata Network Markup Language

The Automata Network Markup Language (ANML, pronounced ANiMaL) provides a sim-

ple yet comprehensive language for describing automata in the vein of XML. ANML serves to

define elements and their connections within the scope of an automata network. Start and re-

porting characteristics as well as potential latching and other configurable aspects of elements

can be defined for each defined component. ANML also offers the notion of a macro for the

compartmentalization of sub graphs as well as simple reuse of functional graph components.

3.2.1.1 ANML XML layout

All specifications in ANML are made within matched XML tags. All defined components

of an automata must be described between matched automata-network tags. Beyond this

the definitions may be totally flat. The only other requirement for an ANML file is that all

components are given a unique id in their opening tag.

Individual elements can be defined using their appropriate definition tags. For each kind

of element there are both required fields and optional fields. Specifications for start, reporting,

latching and other optional behavior are not required and will use a simple default if unspecified.

Intrinsic properties of each element are required and will not compile if left undefined. STEs

must define a symbol set, Counter elements must specify a target, and logical elements must

specify a logical configuration.

Within the definition of an element, outgoing connections to other elements can be defined.

For this the activate-on-match tag is used in combination with the unique id of the target

element. With this basic understanding of element definition and connection specification,

fully functional NFA can be defined.

www.manaraa.com

16

3.2.1.2 Using macros

Macro are an effective means for reproducing multiple identical or near identical sub graphs

without dramatically expanding the defining ANML. Macros may also be useful for adding a

level of organization to an automata by encapsulating complicated subgraphs into a high level

block.

As with other ANML components, macro definitions require a unique id for reference.

A macro definition is divided into two components labeled port definition and macro body.

The port definition is used to characterize the quantity and labels of incoming and outgoing

ports for the macro. Within the macro body internal elements are defined and connected.

Also within this macro body, a port mappings tag is used to connect internal elements to the

predefined ports.

Variables can be introduced into a macro definition for producing unique macro references

from the same definition. To accomplish this a parameter declaration field is added to the port

definition section of the macro definition. Within this parameter declaration parameter names

are defined with default values. These parameters are referenced within the macro body to

allow for variability.

Macro references generate instances of a specified macro definition. Macro references re-

quire their own unique id, as well as a use field specifying the target macro definition. If the

target macro definition has parameters, they must be specified by the macro reference or they

are returned to their default values. Connections using macro references can be named by

using name of the macro reference followed by the desired port.

3.2.1.3 Generating ANML

While the modeling of NFA in ANML is straightforward and relatively simple it can be

difficult to do for sizable solutions. Large and complicated graphs can be particularly difficult

to visualize and debug when simply read from a file. To avoid the difficulties of directly coding

ANML there are two main classes of abstraction: 1) Develop ANML in a graphical, drag and

drop environment or 2) Develop ANML through specialized executable programs.

www.manaraa.com

17

The AP Workbench has been developed as the pioneer drag and drop graphical environment

for the formation of ANML files. It allows for rapid development of small automata, guarantees

valid syntax, and requires no formal understanding of ANML whatsoever. It is capable of

compiling and simulating its own ANML on the fly and allows for a comprehensive active

visual debugging. Unfortunately such graphical applications lack the ability to realistically

produce and simulate large applications.

Specialized executable programs offer a powerful alternative to graphical solutions. By

using other compiled languages to generate ANML, automata can be generated dynamically

with exceptional finesse based on some input parameters. Such an approach lends itself to

large, complicated, and automated solutions. Currently, no supporting libraries or API have

been released in any such languages. While such conversion applications can be effective,

they require significant development work and do not offer the same conveniences of graphical

development environments.

For large, complicated, variable automata development ANML conversion scripts or ap-

plications may provide the only realistic solution. In such cases graphical environments can

still play a beneficial role in debugging small subsections or samples of the entire automata.

The AP Workbench may also be used preliminarily to rapidly assess the workings of NFA

mechanisms that may be difficult to conceptualize. It is therefore important to maintain an

open mind when generating ANML code.

www.manaraa.com

18

CHAPTER 4 SCANNING FOR PROTEIN MOTIFS USING THE

MICRON AUTOMATA PROCESSOR

Christopher R. Sabotta1236, Indranil Roy126, and Srinivas Aluru456

4.1 abstract

Motifs are useful to understand the characteristics and functionalities of a protein by iden-

tifying the families and domains of proteins that it belongs to. Currently, 1308 known motifs

are represented as patterns in a large annotated database called PROSITE. PROTOMOTA

is a hardware-accelerated solution to scan protein sequence(s) for these motifs through the

use of a novel semiconductor architecture called the Micron Automata Processor. The Micron

Automata Processor is purpose-built to search for thousands of patterns in parallel allowing

PROTOMOTA to be many orders of magnitude faster than state-of-the-art CPU based al-

gorithms. For example, all the proteins present in the proteome of Escherichia coli (E.coli)

can be scanned for all the motif-patterns present in PROSITE in less than 100 milliseconds

in contrast to the several minutes reported by state-of-art CPU based solutions. Besides help-

ing biologists to understand and characterize the ever growing number of newly sequenced

proteins, PROTOMOTA is designed to serve as an useful guide for application developers to

understand and develop programs using this new accelerator architecture.

1Primary researcher
2Graduate student
3Primary author
4Graduate advisor
5Author for correspondence
6Iowa State University’s High Performance Computing Group,

Iowa State University, Ames, Iowa 50011, USA.
email: csabotta@iastate.edu, iroy@iastate.edu

www.manaraa.com

19

4.2 Introduction

PROSITE [17] is a large annotated database of known motif descriptors which can be used

to identify families and domains that a protein belongs to. This becomes especially important

when the sequence of an unknown protein is too distant to proteins of known protein structures

for pairwise sequence alignment to reveal the relationship. A motif specifies a small region in

the protein sequence which is conserved in both structure and sequence and plays biologically

meaningful functions like binding properties, catalytic sites, enzymatic activity, etc.

In PROSITE, motif descriptors are represented as patterns and profiles. A pattern is

expressed using a syntax very similar to regular expressions, whereas a profile is defined using

a weight-matrix. Both these methods have their own utilities. While patterns are easy to

understand and are effective for identification of short motifs, profiles provide higher sensitivity

by identification of larger doamins and allowing higher divergence. Throughout the rest of this

paper, the discussion is limited to the scanning of protein sequences for motifs using patterns

alone.

ScanProsite [5] is an interactive web access tool which is used to scan protein sequences

for motifs. It works in three modes: 1) up to 10 protein sequences can be submitted to be

scanned against the PROSITE collection of motifs; 2) a single motif or a combination of motifs

can be submitted to be scanned against a protein sequence database; and 3) protein sequences

or a protein sequence database and a motif or a combination of motifs can be submitted to

be scanned against each other. A PERL-based version of the tool called ps scan can also be

downloaded to scan proteins locally by using pattern entries in PROSITE. Similar programs

have been developed by academic groups [9, 18, 15, 16, 12, 22, 6, 11, 10] and commercial

companies [19]. A complete repository of these programs can be found in the prosite.prg file

distributed by PROSITE.

In this paper, a hardware-accelerated solution to scan for protein motifs using the Micron

Automata Processor is presented. The Automata Processor [7] is a purpose-built semiconduc-

tor architecture which can be programmed to identify thousands of patterns present in a data

stream in parallel. Our software program PROTOMATA automatically converts PROSITE

www.manaraa.com

20

pattern drescriptors to Non-deterministic Finite Automata (NFA) which are used to program

the Automata Processor. The data stream comprises of special character-sequences to enable

or disable specific patterns and the protein sequence(s) which are to be scanned.

In PROTOMATA, all the 3 modes of operation ScanProsite are supported, and the hard-

ware acceleration provides great performance benefits. Firstly, in PROTOMOTA, proteins can

be streamed at 128 MBps, thus allowing even large proteomes to be scanned within milliseconds

instead of minutes reported by state-of-the-art CPU-based solutions [14]. Secondly, with such

high throughputs, restrictions on the maximum number of protein sequences to be scanned

can be overcome. Thirdly, the large capacity of the Automata Processor board allows us to

run 48 independent instances of PROTOMATA is parallel, which might be useful in a server

environment like PROSITE. Further, the capability of the Automata Processor to execute

NFA allows straight-forward and easy implementation of matches with insertion and deletion

errors. This opens up an interesting biological question. Can longer motifs be defined using

longer patterns or combination of patterns allowing insertions and deletions? Such a motif

would provide the readability of a pattern while providing the high sensitivity of a profile.

The rest of the paper is organized as follows. Section 4.3 discusses the methodology,

whereas Section 4.4 provides the implementation details and results. Finally, we conclude in

Section 4.5.

4.3 Methodology

The general overview of the working of PROTOMOTA is shown in Figure 4.1. First, all

the patterns are downloaded and a c++ program is used to convert the patterns into their

equivalent automata expressed in the ANML format. These automata are compiled using the

ANML compiler provided with the Automata Processor SDK. At run-time, the image of the

compiled automata files are loaded using the loader which is also a part of the SDK. The user

provided protein sequence(s) can now be streamed through the Automata Processor and any

patterns which are present in the protein sequence(s) are identified and reported to the user.

www.manaraa.com

21

C++
Executable

Program

Place and
Route

Compiler

Prosite Pattern
File Converter

Program

ANML to Automata
Compiler

Pattern
File

ANML
File

Automata
File

Output
Matched
PatternsLoad

Automata
file onto

Processor

Active,
Programmed

Automata
Processor

Compile time operations Run-time operations

Protein
sequence(s)

Figure 4.1 Overview of the working of PROTOMATA

4.3.1 PROSITE patterns

Prosite patterns are defined as a sequence of pattern elements. Single letter codes as defined

by IUPAC are used to represent amino acids. Prosite allows for the following pattern elements

using the alphabet of amino acids:

• A single amino acid is denoted by a lone amino acid character. For example: S denotes

only the amino acid S.

• One of multiple amino acids is denoted by a series of characters within brackets. For

example: [STG] denotes S or T or G.

• Anything outside of a set of amino acids is denoted by a series of characters within curly

brackets. For example: {STG} denotes any amino acid that is neither S nor T nor G.

• The lower case letter x is used to denote any amino acids.

www.manaraa.com

22

• A pattern can be restricted to the N-terminal of a protein by beginning the pattern with

the character <. For example: < S would only match an S found at the beginning of

the sequence.

• A pattern can be restricted to the C-terminal of a protein by ending the pattern with the

character >. This can also be found in brackets. For example: T > would only match a

T found at the end of the sequence. Similarly [T >] indicates that either a T or the end

of the sequence is acceptable.

• The repetition of a pattern element pe can be defined using parenthesis. This can be

done for a specific number or a range. For example: pe(m) indicates the repetition of pe

m times. Similarly pe(m,n) indicates the repetition of pe anywhere from m to n times

inclusive. Here, m can be zero.

• Each pattern element is separated by a concatenation symbol ’-’. To denote the end of

a pattern the period character ’.’ is used.

An example of a full Prosite pattern is as follows:

PS00008: N-myristoylation site

G− EDRKHPFYW − x(2)− [STAGCN]− P.

4.3.2 Conversion of PROSITE patterns to ANML automata

For each PROSITE pattern there are 2 automata created: filter-automaton used for iden-

tifying the only those patterns which are present in all the protein sequence(s); and location-

automaton for identifying the location(s) where these sequence(s) where these patterns occur.

This is done to mitigate the amount of output handling and its effect on the run-time of the

entire process. The filter-automaton generates output only at the end of the streaming of all

protein sequence(s) and the location-automaton generates output only at those positions where

a common motif occurs in the sequence(s).

Both the automata are constructed in a modular fashion using macros. The only macro

which changes from one motif to another is the pattern macro. The other macros are used

www.manaraa.com

23

to either enable the search for that motif based on user inputs, or in the case of the filter-

automaton to identify motif common to all the sequences.

A sequential ANML program modeling a pattern can be generated by converting each

item into a set of State Transition Elements (STEs.) Using a conversion executable developed

for this purpose, a unique macro is created for each pattern in an input PROSITE data

file. Each character in a pattern is implemented using a State Transition Element which are

then be connected in the order presented to create the pattern. Single amino acid, one-of-

multiple amino acid, and anything-but amino acid can be directly implementing by shosing

the corresponding character class as the label for the STE. For the wildcard x, an STE with

the character set [A− Z] as the label is used.

For small repetitions and ranges, one STE with a given symbol set is produced for the

maximum number of repetitions. These are linked sequentially and can be considered together

as satisfying the pattern element by linking in to the STE0 and out of STEn where n is the

maximum number of repetitions. In the case of a range pe(m,n), additional links are included

to simultaneously consider all k for m <= k <= n. To achieve this the previous pattern

element in the sequence links to STE0, STE1, STE2...STEn−m.

For large repetitions it begins with a single regular STE. This STE connects to a counter

element which tallies consecutive occurrences. Introduced with the counter is a second STE

with a complemented symbol set to the target. The complimenting STE resets the counter

to zero any time a non-matching amino acid is read. When the counter reaches its target the

counter activates the next pattern element.

For large ranges a system similar to large repetitions is used. For this, the original counter

is used as a lower bound. An additional counter is introduced to act as an upper bound. When

an upper bound is reached both counters are reset.

With all pattern elements represented and connected in ANML the code is collected as

a Pattern Macro. Other supporting macros are used in conjunction with the unique pattern

macros to support more sophisticated functionality. An enable macro is used as a prefix to

each pattern macro. This macro is programmed with a 16b enable code. The beginning of any

www.manaraa.com

24

input stream is a preamble listing the enable codes of the desired macros. The enable macro

if selected will continuously drive the beginning of its pattern macro. If it is an N-terminal

macro, the enable macro will only drive the pattern macro for the first cycle of data. The

filter-automaton and the location-automaton shown in Figure 4.2 and Figure 4.3 respectively.

^ff * 00 15 ff

[a-z
A-Z]

\n 1
[a-z
A-Z]

FM [LM]
[IV
FY]GG

Even cycle
activate macro

ID detection
macro

Pattern macro

Repeat macro

STE_1 STE_2 STE_3 STE_4 STE_5

STE_6

STE_7STE_8STE_9STE_10STE_11STE_12

STE_13 STE_14 STE_15

Figure 4.2 The filter-automaton.

The end of the preamble is denoted with the special character ’

xff’. After the enable preamble, proteins sequences are streamed. Each protein sequence is

delimited by a ’

n’ character. When all protein sequences have been streamed, a special character 1 is inserted

to indicate the end of the stream and to enable reporting. In the filter-automaton, a report-

ing macro is used as a suffix to each pattern macro to watch for these special characters and

reset the pattern macro when necessary. For streaming multiple proteins a reporting macro

www.manaraa.com

25

^ff * 00 15 ff

[a-z
A-Z]

FM [LM]
[IV
FY]GG

Even cycle
activate macro

ID detection
macro

Pattern macro

STE_1 STE_2 STE_3 STE_4 STE_5

STE_6

STE_7STE_8STE_9STE_10STE_11STE_12

Figure 4.3 The location-automaton

will restart the pattern macro when the pattern macro has been found to match the current

protein sequence and the

n character has been reached. If the pattern is matched in the protein sequence(s), the ter-

minating character 1 is reached, the reporting macro reports a match at the end of the data

stream. The reporting macro allows for C-terminal macros by only accepting patterns that

have matched directly before the ‘

n′ character.

4.3.3 Finding patterns in proteins

The modularity of the ANML program allows for multiple different uses without needing

to reprogram the Automata Processor. The preamble of the input stream individually enables

patterns as their enable codes are read. For easy configuration, groups of enable codes can be

loaded from user defined files. To find all of the patterns present in a protein is natural. First

the two byte enable code is streamed for each desired pattern, or all. The preamble is ended

with the special character ’\xff’. The protein is then streamed, followed by a ’\n’ character.

www.manaraa.com

26

Finally a 1 is streamed to indicate the end of the file. At the point, all enabled patterns which

were found in the protein report.

This process can be extended to find all patterns present in all of a series of proteins. For

this the enabling mechanism is the same. After this each protein is streamed in order, each

delimited by the ’\n’ character. When an enabled macro has not matched and encounters

a ’\n’ character it is disabled. When the final protein has streamed only patterns that have

matched every protein are enabled and can report.

4.3.4 Finding pattern locations in proteins

After finding the patterns common to all proteins with the common-pattern-finding version

of the program, the locations of these patterns within the proteins must be found. To accom-

plish this, the location-finding version of the program is used. The exact same preamble and

data are streamed. With the location-finding version, reports are generated for each pattern

match for each protein. With this, the matching location for each pattern for each protein of

the motif is known.

4.4 Implementation and results

Prosite defined patterns are available on their website altogether in a single ’.dat’ file. For

this work this file was used, defining 1308 different patterns. A program has been developed to

generically convert patterns defined in this ’.dat’ form to a single ANML program. The ANML

only needs to be generated once and takes 0.87s. The resulting program has 23713 STEs, with

1308 reporting elements or one for each pattern.

This section continues by breaking down the runtime characteristics of the rest of the

process.

4.4.1 Compile-time overhead

Due to the modularity of the designed solution, compiling the ANML code into a placed-

and-routed ’.fsm’ automata file must only be done once. This time is the sum of two com-

www.manaraa.com

27

ponents: 1. The time of compiling the ANML file into an automata file, and 2. The time of

loading the automata file onto the Automata Processor.

Compilation time, automata size and load time vary based on the proteins which are being

represented. This is in the worst case on the order of minutes, and only needs to be performed

once for an indefinite number of instances of the problem. For this reason the compilation and

load times are not considered.

4.4.2 Execution-time overhead

After the programs are in place, the runtime of the application itself must be considered.

This can be divided into three subsections: The preamble, the data streaming, and the read-

out. The time length of the preamble tp can be defined as tp = (2ep + 1) ∗ 7.45 ∗ 10−9 where

ep is the total number of enabled patterns in each version of the program. If all 1308 patterns

were enabled simulatenously for both programs, this yields a maximum combined overhead

cost of 3.899 ∗ 10−5s.

The data streaming must be done completely one time for each of the two versions of the

program. The total time td of this streaming can be defined as td = (7.45 ∗ 10−9) ∗
∑n−1

i=0 lpi

where lpi is the length of the ith scanned protein, and n is the total number of scanned proteins.

When scanning 100 proteins of average length 300 this time is 2.235 ∗ 10−4s for each program,

or a combined 4.470 ∗ 10−4s for both.

Finally the read-out time is considered. For the common-pattern-finding version of the

program, all data is reported simultaneously after the terminating character. The readout cost

is a function of the number of patterns in the program. The time tr can be defined as tr =

((d n
1000e ∗ 40) + 1) ∗ 7.45 ∗ 10−9s where n is the total number of patterns in the program. For

our 1308 pattern example, this time is 6.035 ∗ 10−7s.

For the location-finding version of the program output is captured as it is generated. Be-

cause each pattern only needs to be matched once to a scanned protein, and because each

scanned protein is of significant length, lp � 40, the readout can be performed in parallel to

the data streaming. The final readout after the data has finished streaming will have proper-

www.manaraa.com

28

Proteins (300B) \ Patterns 1 10 100 1000

1 5.1256 ∗ 10−6 5.3938 ∗ 10−6 8.0758 ∗ 10−6 3.4896 ∗ 10−5

10 4.5356 ∗ 10−5 4.5624 ∗ 10−5 4.8306 ∗ 10−5 7.5126 ∗ 10−5

100 4.4766 ∗ 10−4 4.4792 ∗ 10−4 4.5061 ∗ 10−4 4.7743 ∗ 10−4

1000 4.4707 ∗ 10−3 4.4709 ∗ 10−3 4.4736 ∗ 10−3 4.5004 ∗ 10−3

10000 4.4701 ∗ 10−2 4.4701 ∗ 10−2 4.4704 ∗ 10−2 4.4730 ∗ 10−2

100000 4.4700 ∗ 10−1 4.4700 ∗ 10−1 4.4700 ∗ 10−1 4.4703 ∗ 10−1

1000000 4.4700 4.4700 4.4700 4.4700

Table 4.1 Total Computation Time for Sample Problem Instances (s)

ties identical to the common-pattern-finding readout. For our 1308 pattern example, this time

again is 6.035 ∗ 10−7s.

4.4.3 Effective processing rate

The total processing time for an instance of the problem tt is then the sum of the compo-

nents defined for each version of the program. tt = 2*(tp + td + tr). Note tp + tr is constant

with regard to the number of scanned proteins and their respective lengths. Therefore as the

size and quantity of scanned protiens are increased tt will approach td. The effective data

processing rate per character Re is the total amount of time spent on a solution divided by

the total number of input data characters processed. For a total of c characters it can then be

viewed as Re = (tp + tr)/c + 14.7 ns.

The efficiency of the solution can be measured by how closely the effective processing rate

matches the symbol cycle timing. A visual representation of this effective processing rate for

an individual version of the program can be seen for two sample problems in Figure 4.4. Here

Small Enable refers to a 20 pattern selection while Large Enable refers to the complete set of

1308 patterns.

4.4.4 Comparison and results

Because Protomata has been designed to be a general solution, no specific problem is

addressed. Even so, the solution shows impressive results and scales exceptionally well for

large data streaming. Computation times for sample problems are shown in Table 4.1.

www.manaraa.com

29

Figure 4.4 Protomata Scaling Efficiency

A competing implementation using a Pentium 4, 3.4GHz has been found to map all prosite

patterns on the whole Escherichia coli (E. coli) proteome in about 10 minutes [14]. There

exist 4339 protein sequences in the E. coli proteome, each averaging a length of 287 amino

acids [20]. Given these parameters, the protomata solution is capable of processing the data

in 1.8660 ∗ 10−2s. With additional time allocated for the CPU Protomata can safely boast

an runtime of less than 200ms, resulting in a larger than 3000 times speedup over published

results.

4.5 Conclusion

In this paper, a greatly accelerated solution to scan for PROSITE patterns called PRO-

TOMATA has been presented. In order to provide this acceleration, PROTOMOTA uses a

novel hardware architecture which has been purpose-built to scan thousands of patterns in

parallel. The engine serves to find common defined patterns among proteins as quickly as the

data can be streamed by the Automata Processor, with minimal overhead and only a singularly

www.manaraa.com

30

programmed instance.

Acknowledgment

The authors would like to thank Paul Dlugosch and his team from Micron Technology,

Inc. for providing the Automata Processor boards and sharing valuable insights about how to

program the same.

www.manaraa.com

31

CHAPTER 5 APPLICATION DEVELOPERS’ NOTES

This chapter is dedicated to the discussing the intrinsic details that application developers

should be aware of while designing their automata for the Automata Processor. It also contains

the lessons learnt while programming PROTOMOTA, so that such pitfalls can be avoided in

the future

5.1 Automata Processor Board configuration

The Automata Processor board consists of 48 automata processor cores arranged in 6

ranks of 8 processors each. The Automata Processor cores in a single rank share a high speed

inter-connect which allows them to be presented with the same data flow concurrently. The

processor cores can be logically organized into logical cores and logical core groups to provide

maximum throughput while using the device. A large logical core allows the programmer to

exploit parallelism in terms of the set of automata executing on a single data flow, whereas

the logical core groups allow parallelism through multiple data flows.

A logical core consists of 2, 4 or 8 processor cores from a single rank. All the processor

cores in a logical core are presented with the same data flow. The idea is to allow the execution

of one large automaton or multiple smaller automata which cumulatively take more resources

than what is present on a single core. While designing large automata, one must bear in mind

that the physical routing is limited to only a half-core, which as the name suggests contains half

of the resources present in a single Automata processor core. When the compiler is presented

with an automaton which cannot be fit inside a single half-core, it tries to partition it into

multiple logical parts which can be fit into multiple half-cores inside a single logical core.

When these half-cores are presented with the same data flow, it behaves exactly like the the

www.manaraa.com

32

unpartitioned large automaton. However, one must bear in mind, that the partitioning by the

compiler might not be very efficient, or in the worst case may not be possible at all. On the

other hand, an application developer is cognizant of the design and purpose of the automaton

and may be able to produce a much better logical partitioning of the same. Therefore, the

programmer is well adviced to view a logical core as grouping of half-cores rather than full

Automata Processor cores.

A logical core group consists of 2 or more identically programmed logical cores. These

cores may come from one or more ranks and are presented with different data-flows. The idea

here is to allow the automata logic to be applied to multiple data-flows in parallel for higher

throughput. The logical core groups may be handled by one or more CPU thread(s). In the

case of multiple CPU threads, some of the resources of the Automata Processor board get

distributed amongst the CPU threads. The effects of these partitioning are not clear to the

author at the time of writing this document.

5.2 Finer details for designing automata

Having a basic understanding of the Automata Processor and how to configure it will

allow any user to begin designing solutions. With a deeper understanding of the device and

its configuration, however, users are capable of significantly improving their success in both

development and execution.

5.2.1 Element and routing implementation

Along with the STEs, the Automata Processor also contains counter elements and boolean

elements. The counter elements are used to compress the size of automata, where as the

boolean elements can be used to create automata which have more expressive power than

classical NFA. However, programmers should bear two things in mind: 1) counter and boolean

elements are much less numerous than STEs and 2) the output event from a counter or boolean

element can only be routed to an STE within one cycle.

The counter element is a 12-bit binary down-counter. It is programmed with a value and

www.manaraa.com

33

every time one of the count enable signals is activated, the counter is decremented by 1. When

the count reaches 0, an output event is triggered. The value of a counter can be used but only

at the cost of reading out the entire state vector of the Automata Processor. Counters are very

effective in identifying whether a sub-expression of a regular expression has been matched for

exactly or at least a fixed number of times. Other implementations including those in cellular

automata have also been demonstrated.

The boolean element is a function-programmable combinatorial element which can be can

be programmed to perform the following logical functions: OR, AND, NAND, NOR, sum of

products, and products of sums. The boolean elements can be used for combination of the

results of subexpressions. They can also be programmed with an optional synchronized enable

signal which can be used enable all the boolean elements only when the signal is triggered.

This feature allows for some aspects of dynamic automata computing.

The routing matrix controls the distribution of signals to and from the automata elements,

as programmed by the application. The routing matrix is a complex hierarchical lattice struc-

ture of groups of elements. While in an ideal theoretical model of automata every element

can potentially be connected to every other element, the actual physical implementation in

silicon imposes routing capacity limits related to tradeoffs in clock rate, propagation delay,

die size, and power consumption. All programmable elements are subject to these capacity

limitations placed by the routing matrix. Elements have a maximum in-degree and out-degree

of 16. Automata with larger fan-in or fan-out requirements need duplication of elements. Han-

dling large automata with very high edge densities may create enormous challenges on the

efficient mapping of those automata onto the Automata Processor. This could lead to very

large compilation times as well as low efficiency of the usage of the elements on the Automata

Processor.

5.2.2 Avoiding scaling and routing pitfalls

By definition the Automata Processor reliably allows for the routing of as many as 16

ingoing and 16 outgoing connections for each element of the device. Even if these routing

www.manaraa.com

34

limitations are met, and the number of utilized elements is small enough to fit on a single

half-core, a solution still may not be achievable. Because placing and routing is a difficult

problem, the ANML compiler may struggle with particularly dense and large graphs. Even if

such a compilation is eventually successful, a large compilation time may not be acceptable for

repeatedly configured solutions.

A tree structure is a common example of a difficult to compile graph. A tree structure may

be used for the matching of all possible patterns for a small alphabet. Consider an example

tree used to map genome bases {A,C,G, T} as displayed in Figure 5.1. Although such a tree

may use a conservative number of elements and uses only a fraction of maximum outgoing

connections for each element, compilation may struggle for large depths of the tree.

Figure 5.1 Genome mapping tree solution

Because the routing matrix relies in part on locality, the large fanning of a tree structure can

explode outgoing connection requirements at a region level rather than an individual element

level. To accommodate this, large trees may benefit from being manually decomposed into

multiple graphs representing individual paths through the tree. In this way solutions for the

Automata Processor may gain easier compilation at the cost of additional STEs. Figure 5.2

shows the decomposition of the previous tree into individual paths or strands.

In addition to a more direct and rapid compilation decomposing complicated graphs allows

for simple scaling across multiple half-cores. If an automata is too large to fit in a single half

core, the compiler will attempt to decompose the graph itself. While this may work it can lead

to larger compile times, and can potentially introduce inefficient or partial use of multiple cores.

By defining automata in small strands the compiler is capable of producing quick, accurate,

www.manaraa.com

35

Figure 5.2 Genome mapping decomposed solution

and efficient implementations.

Even in situations where per-element routing is modest, scale must also be considered.

Despite having no directly challenging connection properties, a series of singularly connected

elements in a linked list fashion may cause compilation difficulties if it is several thousand

elements long. Once again, the decomposition of such large and complicated graphs can aid

compilation times at the expense of additional elements. If such difficult automata cannot be

decomposed, considering a different approach to the target problem may be in order.

5.3 Designing robust solutions

While understanding the practical capabilities of the Automata Processor in modeling NFA

is important, a complete solution may extend beyond the definition of a single automata. In

reality a developer must also consider the cost of generating ANML and repeated compilation

for exceptionally large tasks, as well as the managing of input and output data streams. Such

extended considerations may influence the design of the NFA themselves and can be beneficial

in maximizing efficiency across the entire development process.

5.3.1 Multiple automata instances

Often when producing a solution for the Automata Processor, the scale or variability of

the problem requires multiple unique instantiations of a rank or core. It is possible that 1) A

solution requires dynamically produced NFA based on the properties of the problem instance

or 2) A solution requires a set of automata too large to be modeled in one instance of the

www.manaraa.com

36

Automata Processor, or both. In such situations the generation, compilation, and load times

for automata are not simple one-time costs, and must be considered in the total operation time

of a solution. Minimizing these costs can contribute tremendously to the overall performance

of a solution.

5.3.1.1 Managing multiple compilations

Solutions that require unique automata to be developed, compiled, and loaded onto the

Automata Processor for each problem instance should be avoided whenever possible. If a

problem absolutely requires the repeated production of such solutions, ANML generation and

compilation times become targets for overall runtime reduction.

If unique ANML must be written for each problem instance, automation is essential. Al-

though ANML generation applications may bear a large upfront development cost, they are the

only reasonable solution for such repeated code production. While graphical editors may pro-

vide a convenient way to update automata, any such user-dependant modification introduces

delays and potential for error across repeated solutions.

After ANML generation times are addressed, ANML compilation times must be addressed.

Although compilation times can be difficult to predict, they are heavily dependent on the

size and routing of the desired automata. It is strongly advised that if a solution requires

such repeated ANML generation and compilation that the automata are as small and sparsely

connected as possible.

5.3.1.2 Avoiding additional compilation

Although compilation time can be lowered significantly with careful graph design, where

possible it can be best to design solutions that avoid compilation altogether. To avoid defin-

ing unique automata for each instance of a problem, singularly compiled automata can be

implemented using one of two approaches: 1) The automata is designed to have configurable

functionality based on some input metadata or 2) A generic automata can be defined for a

problem where element place and route is consistant for all problem instances.

www.manaraa.com

37

A reconfigurable functionality automata allows for different effective automata implemen-

tations without having to change any connections or values of any elements on the Automata

Processor. Such a solution can be beneficial when a large amount of functionality is prede-

fined and only a subsection of it is relevant for a given problem implementation. Supporting

subgraphs can be added to a solution to enable or disable sections of the main graph based

on metadata. The introduction of such extra streamed input data can reduce the effective

processing rate of an automata, and should be minimized by design. Although metadata may

extend the data stream, reconfigurable solutions will remain significantly faster than recom-

piled solutions.

If instances of a problem require uniquely configured automata that share a common ele-

ment placement and routing, a different approach can be taken. Compiled and loaded automata

can have some or all of their non-routing element properties redefined without compilation.

This process is known as reflashing, and is an important strength of the Automata Processor.

While slower than a reconfigurable functionality approach, reflashing is significantly faster than

loading new automata and allows for the disabling of existing sections of the target automata.

An example of basic reflashing can be seen in Figure 5.3. Here, a simple matching automata

is reflashed to find different words of the same size.

5.3.2 Managing input and output data

While input and output data approaches may seem rigid with respect to a given problem,

such properties are often quite flexible and can contribute significantly to the overall perfor-

mance of a solution. Both input data and output reporting introduce unique and important

considerations for the design of a comprehensive solution.

5.3.2.1 Input data streams

For any given problem, a result or partial result is achieved when an automata instance

reaches the end of the input data stream. This data stream in most cases is already in its sim-

plest, most direct form and cannot be reduced. In some cases, automata may require additional

www.manaraa.com

38

Figure 5.3 Automata redefined without additional compilation

special characters or metadata to activate optional subgraphs, propagate state transitions, or

delimit existing data.

While metadata can allow singularly programmed automata to achieve a large variety of

functionality, it is important to limit such additions to a reasonable amount. Note that if an

automata requires a pumping delimiter character every third cycle, this metadata has effec-

tively increased the data stream and consequently runtime by 50%. For optimal throughput

metadata should be implied by state where possible, and minimized elsewhere. In an extreme

case, specialized automata may be carefully designed to assume implied data that has been

removed from the original data stream.

Although input data streams cannot be practically shrunk, in many cases they can be

divided. Where possible, solutions can benefit from breaking an input stream into multiple

www.manaraa.com

39

smaller streams that can be processed in parallel. These processing automata across multiple

cores may be identical or may be specialized for their individual section of the original data

stream. When designing solutions it is important to consider the possibility of such stream

division as the large gains in throughput will often outweigh potential increased resource con-

sumption.

5.3.2.2 Output handling

Output for the Automata Processor is an exceptionally important consideration for the

design of efficient solutions. Each half of an Automata Processor core is divided into three

separate output regions for a total of six across the core. When an STE from a given region

reports a match, it is sent ot the output event memory of that region. From there, each of

the regions output events can be consolidated into the main output event buffer and finally

reported. The process of transferring data from the output event memory to the main output

event buffer costs roughly 40 input symbol cycles. Furthermore, this cost must be paid serially.

If all six output regions report simultaneously, their collective results cannot be reported for

40 ∗ 6 = 240 input symbol cycles.

From this there are two important lessons. First, it is important to consolidate output to

as few regions as possible. Since each region can only support 1024 reporting lines, a solution

may benefit from having fewer or more selective reporting cases. It can be advantageous to

have multiple reporting elements with the same goal feed into a smaller representative set of

reporting elements.

Secondly, it is important to minimize the amount of reporting in general. Where possible

it can be advantageous to have multiple elements wait to report simultaneously or at the end

of data. Solutions that require constant small reports of data with only a small number of

cycles between each event will perform poorly. A cohesive solution must recognize that the

CPU must still handle all of the data that is returned by the Automata Processor. A naive

or greedy solution may even produce more data than it takes in, and such solutions should be

considered with extreme caution.

www.manaraa.com

40

CHAPTER 6 CONCLUSION

The Automata Processor is shown to be an extremely promising new processing architecture

for large scale pattern matching applications. In the field of Bioinformatics, search for motif

patterns in protein sequences provides one such application. PROSITE is a large annotated

database of known protein motifs and currently contains 1308 known protein motifs expressed

as patterns. Due to the large capacity of the Automata Processor, the automata for all these

motif-patterns can be loaded and executed in the Automata Processor in parallel. This gives

rise to large scale speed-up with respect to execution times of existing software. For example,

all proteins present in the proteome of Escherichia coli (E.coli) can be scanned against all

motif-patterns in less than 100 milliseconds. This is more than a 6000 times speed-up over

published execution times. Furthermore, when the automata for all these motif-patterns are

loaded onto the Automata Processor chip, they collectively take up about half of the resources

of the chip. Since a single rank contains 8 Automata Processor chips and the automata for

all motif-patterns which can fit into a single rank can be executed in parallel, the execution

time for any given protein sequence will remain constant for a motif-database which is up to

16 times of the current size.

Though PROTOMOTA currently provides a command-line interface only, it supports all

the modes of operation provided by the PROSITE website, and more. In the first mode

of operation, PROTOMOTA supports the scanning for all known motifs in a given protein

sequence; or all common motifs in multiple protein sequences. Here PROTOMOTA not only

provides a more fine-grained control over motifs being searched for, but also does not place an

upper limit of 8 on the number of protein sequences as in the case of the PROSITE website. In

the second mode of operation the presence of a particular motif can be detected in all proteins

www.manaraa.com

41

in the database.

PROTOMATA was designed not only to aid biologists in the characterization of a vastly

growing number of newly sequenced proteins, but also to serve as a guide for application

developers in the field to develop programs on this new accelerator architecture. Therefore,

the automaton for any motif is defined in a modular and easy to understand manner using

the macros. The script to generate the automaton from a motif-pattern is also provided. This

also makes it easy to handle new motifs which will be added to the PROSITE database or are

under the investigation of a user.

Future work in this direction consists of executing this software on the real Automata

Processor board and making the same available to everybody through a web-based interface.

This interface may complement or be part of the PROSITE website. Further, the lessons

learnt while developing the PROTOMOTA application (and mentioned in the application

developers notes) would play a more significant role while developing larger and more complex

bioinformatics problems in the future.

In general, more and more applications in various fields are being successfully designed

and implemented on the Automata Processor. The processor has already been shown to

considerably accelerate applications in the field of network security, image processing and

machine learning, etc. Future generations of the processor which place lower restrictions on

the resource requirements of the automata design are already in the works. Though thinking

in terms of NFA can be difficult at first, but it paves the way for more natural exploration of

difficult problems. The advent of the Automata Processor will provide a way to execute these

NFA directly on the processor. With its large capacity to execute thousands of automata in

parallel, it will a promising architecture for which to watch out.

www.manaraa.com

42

Bibliography

[1] Perl compatible regular expressions.

[2] Janusz Brzozowski and Hellis Tamm. Theory of átomata. In Developments in Language

Theory, pages 105–116. Springer, 2011.

[3] Cezar Câmpeanu, Nicolae Sântean, and Sheng Yu. Mergible states in large nfa. Theoretical

computer science, 330(1):23–34, 2005.

[4] Chang Chia-Hsiang and Robert Paige. From regular expressions to dfa’s using compressed

nfa’s. Theoretical Computer Science, 178(1):1–36, 1997.

[5] Edouard De Castro, Christian JA Sigrist, Alexandre Gattiker, Virginie Bulliard, Petra S

Langendijk-Genevaux, Elisabeth Gasteiger, Amos Bairoch, and Nicolas Hulo. Scanprosite:

detection of prosite signature matches and prorule-associated functional and structural

residues in proteins. Nucleic acids research, 34(suppl 2):W362–W365, 2006.

[6] Philippe Dessen, Christian Fondrat, Claire Valencien, and Claude Mugnier. Bisance: a

french service for access to biomolecular sequence databases. Computer applications in

the biosciences, 6(4):355–356, 1990.

[7] Paul Dlugosch, Dave Brown, Paul Glendenning, Michael Leventhal, and Harold Noyes.

An efficient and scalable semiconductor architecture for parallel automata processing.

Transactions on Parallel and Distributed Systems, 2013.

[8] Paul Dlugosch, Dave Brown, Paul Glendenning, Michael Leventhal, and Harold Noyes. An

efficient and scalable semiconductor architecture for parallel automata processing. IEEE

Transactions on Parallel and Distributed Systems, 2013, in press.

www.manaraa.com

43

[9] Rainer Fuchs. Macpattern: protein pattern searching on the apple macintosh. Computer

applications in the biosciences: CABIOS, 7(1):105–106, 1991.

[10] Rainer Fuchs. Predicting protein function: a versatile tool for the apple macintosh. Com-

puter applications in the biosciences: CABIOS, 10(2):171–178, 1994.

[11] Christophe Geourjon and Gilbert Deleage. Interactive and graphic coupling between multi-

ple alignments, secondary structure predictions and motif/pattern scanning into proteins.

Computer applications in the biosciences: CABIOS, 9(1):87–91, 1993.

[12] Steven Henikoff and Jorja G Henikoff. Automated assembly of protein blocks for database

searching. Nucleic Acids Research, 19(23):6565–6572, 1991.

[13] Jan Holub. Dynamic programmingnfa simulation. In Implementation and Application of

Automata, pages 295–300. Springer, 2003.

[14] Nicolas Hulo, Amos Bairoch, Virginie Bulliard, Lorenzo Cerutti, Béatrice A Cuche,

Edouard De Castro, Corinne Lachaize, Petra S Langendijk-Genevaux, and Christian JA

Sigrist. The 20 years of prosite. Nucleic acids research, 36(suppl 1):D245–D249, 2008.

[15] LF Kolakowski Jr, JA Leunissen, and JE Smith. Prosearch: fast searching of protein

sequences with regular expression patterns related to protein structure and function.

Biotechniques, 13(6):919–921, 1992.

[16] Peter R Sibbald and Patrick Argos. Scrutineer: a computer program that flexibly seeks

and describes motifs and profiles in protein sequence databases. Computer applications

in the biosciences: CABIOS, 6(3):279–288, 1990.

[17] Christian JA Sigrist, Edouard De Castro, Lorenzo Cerutti, Béatrice A Cuche, Nicolas

Hulo, Alan Bridge, Lydie Bougueleret, and Ioannis Xenarios. New and continuing devel-

opments at PROSITE. Nucleic acids research, 41(D1):D344–D347, 2013.

[18] Rodger Staden. Screening protein and nucleic acid sequences against libraries of patterns.

Mitochondrial DNA, 1(6):369–374, 1991.

www.manaraa.com

44

[19] Michael JE Sternberg. Promot: a fortran program to scan protein sequences against a

library of known motifs. Computer applications in the biosciences: CABIOS, 7(2):257–

260, 1991.

[20] Axel Tiessen, Paulino Pérez-Rodŕıguez, and Luis J Delaye-Arredondo. Mathematical

modeling and comparison of protein size distribution in different plant, animal, fungal and

microbial species reveals a negative correlation between protein size and protein number,

thus providing insight into the evolution of proteomes. BMC research notes, 5(1):85, 2012.

[21] Kuo-Kun Tseng, Yuan-Cheng Lai, Ying-Dar Lin, and Tsern-Huei Lee. A fast scalable

automaton-matching accelerator for embedded content processors. ACM Transactions on

Embedded Computing Systems (TECS), 8(3):19, 2009.

[22] James C Wallace and Steven Henikoff. Patmat: a searching and extraction program

for sequence, pattern and block queries and databases. Computer applications in the

biosciences: CABIOS, 8(3):249–254, 1992.

[23] Hao Wang, Shi Pu, Gabe Knezek, and J Liu. Min-max: A counter-based algorithm for

regular expression matching. 2013.

[24] Yi-Hua Yang and Viktor K Prasanna. High-performance and compact architecture for

regular expression matching on fpga. Computers, IEEE Transactions on, 61(7):1013–1025,

2012.

[25] Yuan Zu, Ming Yang, Zhonghu Xu, Lin Wang, Xin Tian, Kunyang Peng, and Qunfeng

Dong. Gpu-based nfa implementation for memory efficient high speed regular expression

matching. ACM SIGPLAN Notices, 47(8):129–140, 2012.

	2013
	Advantages and challenges of programming the Micron Automata Processor
	Christopher Sabotta
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1 INTRODUCTION
	2 UNDERSTANDING THE MICRON AUTOMATA PROCESSOR
	2.1 Introduction
	2.2 Understanding the Automata Processor
	2.2.1 Sequential processor implementations of NFA
	2.2.2 Automata Processor implemenations of NFA
	2.2.3 Gaining parallelism

	2.3 Automata Processor implementation
	2.4 Competing NFA hardware
	2.4.1 Scope of ability
	2.4.2 Performance and capacity

	3 USING THE MICRON AUTOMATA PROCESSOR
	3.1 Automata Processor components
	3.1.1 Types of element
	3.1.2 Input and output

	3.2 Modeling automata
	3.2.1 Using Automata Network Markup Language

	4 SCANNING FOR PROTEIN MOTIFS USING THE MICRON AUTOMATA PROCESSOR
	4.1 abstract
	4.2 Introduction
	4.3 Methodology
	4.3.1 PROSITE patterns
	4.3.2 Conversion of PROSITE patterns to ANML automata
	4.3.3 Finding patterns in proteins
	4.3.4 Finding pattern locations in proteins

	4.4 Implementation and results
	4.4.1 Compile-time overhead
	4.4.2 Execution-time overhead
	4.4.3 Effective processing rate
	4.4.4 Comparison and results

	4.5 Conclusion

	5 APPLICATION DEVELOPERS' NOTES
	5.1 Automata Processor Board configuration
	5.2 Finer details for designing automata
	5.2.1 Element and routing implementation
	5.2.2 Avoiding scaling and routing pitfalls

	5.3 Designing robust solutions
	5.3.1 Multiple automata instances
	5.3.2 Managing input and output data

	6 CONCLUSION

